Let the Matrix $U \in \mathbb{C}^{N \times N}$ is Unitary. Define $\widetilde{U} \in \mathbb{R}^{2N \times 2N}$ as:
$$ \widetilde{U}=\begin{bmatrix}
Re(U) & -Im(U)\\
\\
Im(U)& Re(U)
\end{bmatrix}$$
Prove that $\widetilde{U}$ is Orthonormal
$$ \widetilde{U}=\begin{bmatrix}
Re(U) & -Im(U)\\
\\
Im(U)& Re(U)
\end{bmatrix}$$
Prove that $\widetilde{U}$ is Orthonormal
No comments:
Post a Comment