Can we Express an Indefinite Matrix as Sum of Positive Definite/Semi Definite and Negative Definite/Semi Definite matrices? I am working on it...
This Blog is Mainly for those who are doing Full Fledged Research in Wireless Communications and Signal Processing,Control Systems, Power Systems, Chemical Engg,Computer Science,etc .Math Prequisites for this include Calculus, Differential Equations,Probability and Stochastic Process,Signal Analysis,Linear Algebra,Optimization,Real and Complex Analysis, Information Theory and List Goes on...I will be Posting some Interesting Problems in these Math Fields and Discussions are Most Welcomed :)
HTML Code
Friday, 11 May 2012
Conditional Gaussian Distribution
Let $X_1$ and $X_2$ are Jointly Gaussian Random Variables(Which Implies They are Individually Gaussian) i.e.,
$$ X_1 \sim \mathcal{N}(0,\sigma_1^2)$$ and
$$X_2 \sim \mathcal{N}(0,\sigma_2^2)$$, with Correlation Coefficient as $\rho$.
Then we Know that :
$$f_{X_1X_2}(x_1,x_2)=\\ \\ \left(\frac{1}{2 \pi \sigma_1 \sigma_2 \sqrt{1-\rho^2}} \right)\times
\mathbf{e^{\frac{-1}{2(1-\rho^2)}\left(\frac{x_1^2}{\sigma_1^2}-\frac{2 \rho x_1 x_2}{\sigma_1 \sigma_2}+\frac{x_2^2}{\sigma_2^2} \right )}}\\ \\ \;\;\;\; \forall\; x_1,x_2 \in (-\infty\; \infty)\\
\\ $$
Prove that :
$$ E(X_2|X_1)= \frac{\rho x_1 \sigma_2}{\sigma_1} $$
$$ Var(X_2|X_1)=\sigma_2^2\,(1-\rho^2) $$
$$ X_1 \sim \mathcal{N}(0,\sigma_1^2)$$ and
$$X_2 \sim \mathcal{N}(0,\sigma_2^2)$$, with Correlation Coefficient as $\rho$.
Then we Know that :
$$f_{X_1X_2}(x_1,x_2)=\\ \\ \left(\frac{1}{2 \pi \sigma_1 \sigma_2 \sqrt{1-\rho^2}} \right)\times
\mathbf{e^{\frac{-1}{2(1-\rho^2)}\left(\frac{x_1^2}{\sigma_1^2}-\frac{2 \rho x_1 x_2}{\sigma_1 \sigma_2}+\frac{x_2^2}{\sigma_2^2} \right )}}\\ \\ \;\;\;\; \forall\; x_1,x_2 \in (-\infty\; \infty)\\
\\ $$
Prove that :
$$ E(X_2|X_1)= \frac{\rho x_1 \sigma_2}{\sigma_1} $$
$$ Var(X_2|X_1)=\sigma_2^2\,(1-\rho^2) $$
Thursday, 10 May 2012
Find the Digit
This is a Pretty Logical Question..
1216451*0408832000 is 19!, ! Denotes Factorial. Find the Digit in the place of *
1216451*0408832000 is 19!, ! Denotes Factorial. Find the Digit in the place of *
Unitary and Orthonormal Matrix
Let the Matrix $U \in \mathbb{C}^{N \times N}$ is Unitary. Define $\widetilde{U} \in \mathbb{R}^{2N \times 2N}$ as:
$$ \widetilde{U}=\begin{bmatrix}
Re(U) & -Im(U)\\
\\
Im(U)& Re(U)
\end{bmatrix}$$
Prove that $\widetilde{U}$ is Orthonormal
$$ \widetilde{U}=\begin{bmatrix}
Re(U) & -Im(U)\\
\\
Im(U)& Re(U)
\end{bmatrix}$$
Prove that $\widetilde{U}$ is Orthonormal
Wednesday, 9 May 2012
Complex Gaussian Random Vector
Consider an $N$ Dimensional Complex Gaussian Random Vector $Z \in \mathbb{C}^N$, Such That
$$ Z=X+jY $$, where $X \in \mathbb{R}^N$ and $ Y \in \mathbb{R}^N$ are $N$ Dimensional Real Gaussian Random Vectors .
Covariance matrix $Q$ of $Z$ in terms of Auto Covariance and Cross Covariance Matrices of $X$ and $Y$ is Defined as:
$$ Q=E((Z-E(Z))(Z-E(Z))^H)$$
So:
$$ Q=(\Sigma_{XX}+\Sigma_{YY})-j(\Sigma_{XY}-\Sigma_{XY}^T)$$
Define $2N$ Dimensional Gaussian Random Vector $\widetilde{Z}$, as:
$$ \widetilde{Z}= \begin{bmatrix}
X\\
Y
\end{bmatrix}$$
The Covariance Matrix of $\widetilde{Z}$ is Denoted as $\widetilde{K}$, Defined as:
$$ \widetilde{K}=E((\widetilde{Z}-E(\widetilde{Z}))(\widetilde{Z}-E(\widetilde{Z}))^T)$$
So $\widetilde{K}$, In terms of Auto Covariance and Cross Covariance Matrices of $X$ and $Y$ is:
$$ \widetilde{K}=\begin{bmatrix}
\Sigma_{XX} & \Sigma_{XY} \\
\\
\Sigma_{XY}^T & \Sigma_{YY}
\end{bmatrix}$$
Now if $Z$ is Circularly Symmetric, Prove That:
$$ \widetilde{K}=\frac{1}{2}\begin{bmatrix}
Re(Q) & -Im(Q)\\
\\
Im(Q) & Re(Q)
\end{bmatrix} $$
$$ Z=X+jY $$, where $X \in \mathbb{R}^N$ and $ Y \in \mathbb{R}^N$ are $N$ Dimensional Real Gaussian Random Vectors .
Covariance matrix $Q$ of $Z$ in terms of Auto Covariance and Cross Covariance Matrices of $X$ and $Y$ is Defined as:
$$ Q=E((Z-E(Z))(Z-E(Z))^H)$$
So:
$$ Q=(\Sigma_{XX}+\Sigma_{YY})-j(\Sigma_{XY}-\Sigma_{XY}^T)$$
Define $2N$ Dimensional Gaussian Random Vector $\widetilde{Z}$, as:
$$ \widetilde{Z}= \begin{bmatrix}
X\\
Y
\end{bmatrix}$$
The Covariance Matrix of $\widetilde{Z}$ is Denoted as $\widetilde{K}$, Defined as:
$$ \widetilde{K}=E((\widetilde{Z}-E(\widetilde{Z}))(\widetilde{Z}-E(\widetilde{Z}))^T)$$
So $\widetilde{K}$, In terms of Auto Covariance and Cross Covariance Matrices of $X$ and $Y$ is:
$$ \widetilde{K}=\begin{bmatrix}
\Sigma_{XX} & \Sigma_{XY} \\
\\
\Sigma_{XY}^T & \Sigma_{YY}
\end{bmatrix}$$
Now if $Z$ is Circularly Symmetric, Prove That:
$$ \widetilde{K}=\frac{1}{2}\begin{bmatrix}
Re(Q) & -Im(Q)\\
\\
Im(Q) & Re(Q)
\end{bmatrix} $$
Tuesday, 8 May 2012
Affine Transformation Does not Alter Correlation Coefficient
if $X$ and $Y$ are Two Random Variables with Correlation Coefficient $\rho$, Then the Correlation Coefficient of Random Variables
$$ a_1X+b_1\;\text{and}\; a_2Y+b_2$$, Where $a_1$ and $a_2$ are Non Zero Real Numbers with Same Sign is also $\rho$. if They have Opposite Signs, The Correlation Coefficient is $-\rho$.
$$ a_1X+b_1\;\text{and}\; a_2Y+b_2$$, Where $a_1$ and $a_2$ are Non Zero Real Numbers with Same Sign is also $\rho$. if They have Opposite Signs, The Correlation Coefficient is $-\rho$.
Sunday, 6 May 2012
Laplacian Distribution
Consider the Laplacian Distribution whose PDF is Given by:
$$ f_X(x)=\frac{1}{2}\,e^{-|x|}\,\, {-\infty}<x<{\infty} $$
If Random Variable $Y$ is Defined as
$$ Y=|X|+|X-3| $$, Find
$$ Pr(Y\geq 3) $$
$$ f_X(x)=\frac{1}{2}\,e^{-|x|}\,\, {-\infty}<x<{\infty} $$
If Random Variable $Y$ is Defined as
$$ Y=|X|+|X-3| $$, Find
$$ Pr(Y\geq 3) $$
Subscribe to:
Posts (Atom)